Livestock Research for Rural Development 37 (2) 2025 LRRD Search LRRD Misssion Guide for preparation of papers LRRD Newsletter

Citation of this paper

Floristic diversity and botanical composition of steppic Stipa tenacissima (L.) rangelands in El-Bayadh, Algeria

Salemkour Nora1, Boukerker Hassen1, Bettiche Farida1, Chaib Warda1, Doghbage Abdelghafour2, Fadlaoui Haroun1, Absi Kenza1 and Mancer Halima1

1 Scientific and Technical Research Center on Arid Regions (CRSTRA), Po. Box 1682, Biskra, Algeria
boukerkerhassen@gmail.com
2 Agropastoral Research Center (CRAPAST), Djelfa, Algeria

Abstract

The steppic rangelands in Algeria, especially those with Stipa tenacissima (L.) (Alfa) occupy vast areas and hold an ecological and socio-economic place of great importance, because of their well differentiated geographical distribution and their biological potential. These plants play a crucial role in food security by providing sustainable sources of forage for livestock and, in some cases, offering edible products that contribute to the nutritional needs of local populations in arid regions. This study is a floristic investigation of the steppe region of El-Bayadh, situated in western Algeria, aimed at analyzing and characterizing the spontaneous flora of the region. Stipa tenacissima (L.) rangelands chosen and 25 surveys were carried out. The results obtained enabled the identification of 106 plant species from 23 families, with Asteraceae and Poaceae being the dominant families. Also, the results show that 69.81 % of species are annual and 30.18 % are perennial. This abundance of annuals species may be explained by the facilitation caused by the Stipa tenacissima and Lygeum spartum clumps. Furthermore, the diversity indexes tested, Shanon-Waever (H') and Pielou (P) reveal high values (undoubtedly due to enclosures against overgrazing) reflecting a gradual evolution of the plant cover, as a result, greater ecological stability. The analysis of biological types revealed the dominance of therophytes (64.15%) in this flora, indicating the occurrence of the therophytization phenomenon, which is a form of vegetative adaptation in arid areas. The chorological types analysis revealed that the Mediterranean element is dominated with 52 %, the endemic element comes in fourth position with a rate of 6.6 % and offers seven species, which must be safeguarded and preserved, in sight of their biological and heritage values.

Key words: Algeria, chorological types, El-Bayadh, floristic diversity, life forms types, Stippa tenacissima (L.)


Introduction

The Algerian steppe serves as an ecological buffer zone between coastal Algeria and the Sahara (Nedjraoui and Bedrani 2008). Bounded to the north by the Tellian Atlas and to the south by the Saharan Atlas, it stretches approximately 1,000 km from the eastern to the western border of the country, spanning an area of 20 million hectares (Slimani et al., 2010). It accounts for 9% of Algeria's territory and consists predominantly of true steppe rangeland areas.

The steppic rangelands in Algeria, especially those with Stipa tenacissima (L.) (esparto grass) previously occupied vast areas (Djebail 1978; Pouget 1980) and hold an ecological and socio-economic place of great importance, because of their well differentiated geographical distribution and their biological potential (Le Houérou 1995; Khelil 1997; Kadi Hanifi 1998 ; Nedjraoui 2004), as well as their crucial role in soil conservation, combating desertification (Le Houérou 1969; Cerdà 1997; Jeddiand Chaieb 2010). Additionally, their sustainable cultivation helps diversify food sources and combat the effects of climate change on agricultural production. Several studies have shown that these plants can serve as an important alternative to conventional crops (Shelef and al 2017).

Numerous studies (Le Houérou 1969; Djebaili 1978; Aidoud 1983; Aidoud and Touffet, 1996; Slimani and al 2010) have demonstrated that the decline in floristic diversity cannot be solely attributed to climatic factors such as increasing aridity and drought. It is likewise significantly influenced by anthropogenic factors, including fires and overgrazing, both of which result from unsustainable land use practices like overexploitation and land clearing. Also, in Algeria it is traditionally known, pastoralism in the steppe was regulated by customary nomadic law, imposing an annual rotation of the ranges to allow the regeneration of the plant cover. However, the disappearance of this system at the end of the 1970s upset the balance of the steppe. From now on, breeders lead their herds where and when they want, without constraint. This situation, aggravated by the motorization of transport facilitating access to areas that were previously inaccessible, has led to a progressive destruction of the steppe (Bensenane et al 2014).

This overgrazing results from the increase in livestock combined with a decrease in the fodder supply. In addition, the unorganized exploitation of boreholes and high-flow water points leads to an excessive concentration of herds around these points, causing the formation of desertified halos visible over radiuses of 5 to 15 km, as shown by satellite images (Mederbal, 1992; Bouazza, 1995).

The intensive use of rangelands at high stocking rates accelerates land degradation (Le Floc’h 2001) and contributes to biodiversity loss (Jacobo and al 2006).

This is how Benabdeli (1983) wrote in this sense: "Under the combined effect of overgrazing and droughts, the Stipa tenacissima steppe is in a state of advanced degradation facilitating a process of desertification". It should also be noted that the decline, for example, of the alfalfa layer also results from the practice of burning carried out by large-scale farmers to activate the young shoots which sheep are fond of (Moulay A 2012).

Biodiversity loss is a global issue impacting ecosystems across the world. At the current rate of exploitation and destruction, thousands of plant species face the threat of extinction. This decline in biodiversity has profound and long-term consequences on ecosystem functioning. The primary drivers of biodiversity loss include habitat fragmentation and destruction, pollution, land clearing and overexploitation of natural resources.

This study aims to examine the floristic diversity within the Stipa tenacissima enclosure in the El Bayadh region (western Algeria). The primary objective is to provide scientific data to decision-makers to support the long-term conservation and maintenance of local plant biodiversity. Additionally, it seeks to promote rational exploitation and sustainable management of this ecosystem, safeguarding it from degradation caused by unsustainable practices, which are particularly common in North Africa (Quézel 2000).

The research focuses on highlighting the richness and diversity of the flora by compiling a comprehensive species inventory. Special attention is given to assessing the floristic biodiversity of the region, with an emphasis on analyzing key aspects such as biological characteristics (e.g., morphological types, life-form types) and chorology (e.g., chorological types).


Materials and methodes

Study Area

The study area is situated near the city of El Bayadh in western Algeria, specifically in the "Stitten" locality within the Ktifa enclosure (Fig. 1). This enclosure or fencing off in our study area is temporary. It constitutes an essential step for the preservation and restoration of steppe ecosystems. Its duration, ranging from three to five years, depends mainly on the initial state of degradation and local environmental conditions. Rigorous management and regular monitoring will be applied to guarantee its effectiveness and ensure the sustainable exploitation of natural resources in the long term. Indeed, the HCDS (High Commission for the Development of the Steppe) is responsible for promoting sustainable management of steppe pastoral rangelands. According to the HCDS, out of a total of 15 to 20 million hectares of rangelands, approximately 50% are degraded to very degraded (10%). The current approach of the HCDS in these degraded steppes has been to carry out passive restoration by banning grazing for a few years (Salemkour et al 2016). Their subsequent reopening to controlled grazing uses an approach alternating grazing and rest during the same year (Voisin 1957; Chaieb 1989; Bendali et al 1990; Amghar et al 2012; Selemani et al 2013). Our region is part of the "high steppe plains," one of Algeria's three main eco-climatic zones. The soil in this area supports vegetation predominantly characterized by Stipa tenacissima (L.).

Figure 1. Location and general view of the study area
Sampling

Sampling was conducted during the 2015 growing season. The quadrate point method (Daget and Poissonet 1971; Floret 1988) was applied. A total of 25 surveys were conducted. Each survey is materialized by an area of 1.6 x 20 m, either 32 m², the optimum area retained in the South-Oraniansteppic vegetation (Bouakkaz 1976). The linear point technique (Daget and Poissonnet 1971) was employed to evaluate the state of vegetation cover. Observations were recorded every 10 cm along a 20 m graduated tape laid across the vegetation, resulting in a total of 200 reading points. In the absence of vegetation, other soil surface characteristics were noted. Additionally, a species presence list was compiled within an area of 32 m². Species identification was conducted using key references, including the Flora of Quezel and Santa (1962 and 1963), the Flora of North Africa by Maire (1952–1987) and the Flora and Vegetation of the Sahara by Ozenda (2004).

Data collection

In this study, the identified plant species were analyzed based on plant diversity and functional traits, including floristic richness and diversity, morphological types, life forms and chorological types. According to Le Floc'h and Aronson (1995) and Aronson and Le Floc'h (1996), these traits are essential ecosystem attributes that influence plant growth, survival and reproduction (Violle and al 2007).

Categorizing plant species according to their functional traits, as well as their nomenclature, was carried out using key references on Algerian flora. Notable works consulted include New Flora of Algeria and the Southern Desert Regions (Quézel and Santa 1962 and 1963; Quézel 1965) and Flora and Vegetation of the Sahara (Ozenda 2004).

Floristic richness and diversity

Floristic species richness refers to the overall count of species found in each survey (Magurran 2004).

In each survey, the overall plant cover was calculated using the formula:

    (1)



Where:

Data on percentage cover were utilized to compute the Shannon-Weaver diversity index (H') (Shannon and Weaver 1949) and Pielou eveness index (E) (Piélou 1966), using the following formulas:

    (2)


Where:

    (3)


Where:

Morphological types

Plant species were grouped into two primary biological categories: annual (A) and perennial (P), based on their life cycle and environmental responses.

Life forms types

Plants were categorized following the system developed by Raunkiær (1934), which was later revised by Ellenberger and Mueller-Dombois (1967). This classification is determined by the position of the vegetative buds in relation to the soil surface during adverse seasons. The classification was based on data from the Algerian flora (Quézel and Santa, 1962 and 1963; Quézel, 1965). The mainlife forms are therophyte (TH), chamaephyte (CH), hemicryptophyte (HE), phanerophyte (PH) and geophytes (GE).

Chorological types

The chorological types of the taxa recorded in the study area were identified based on several floras, including the Algeria flora (Quézel and Santa 1962 and 1963), the Saharan flora and vegetation (Ozenda, 2004),the flora of Morocco (Négre 1962), the flora of Tunisia (Pottier Alapetite 1979-1981), the three volumes of med-check-list (1984,1985,1989) (Greuter and al 1984, 1986, 1989), the work of Aidoud-Lounis (1997), Amghar (2002), KadiHanifi (1998).

This attribute (Chorological types) is important because it allows indigenous and natural species to be distinguished from exotic and/or introduced species.

Therefore, the inventoried flora was categorized according to a phytogeographical system, which is subdivided into fifteen chorological types as follows: (i) Mediterranean (Med) ;(ii) Euro Mediterranean (Eur. Med) ; (iii) European (Eur) ; (iv) Saharan Arabian (Sah. Ara.) ; (v) Mediterranean IranoTuranian (Med. Irano Tur.) ; (vi) IranoTuranian (Irano Tur.) ; (vii) Endemic (End.) ; (viii) Eurasian (Euras.) ; (ix) Mediterranean Saharo Arabian(Med. Sah. Ara.) ;(x) Saharian (Sah.) ; (xi) North African (N.A.) ; (xii) Saharian Sindian (Sah. Sind.) ; (xiii) Ibero Mauritanian (Ibero Maur.) ; (xiv) Saharan Mediterranean (Sah. Med.) ;(xv) Pluri-regional (P.).


Results and discussion

Floristic richness (S), morphological types and diversity (H' and E)

In total, 106 species were identified in the study area (Table 1). This number is quite notable and is consistent with those obtained by several authors who have worked in similar regions, such as (Amghar and al 2012) with 153 species, (Merdas and al 2017) with 101 species, (Zehraoui 2016 with 107 species and (Bekai and al 2019) with 106 species.

Table 1. Family, morphological types, biological types and chorological types of main species recorded in the study area

Family

Species

Morphological
types

Biological
Types

Chorological
types*

Aizoaceae

Aizoon hispanicum

A

TH

Med Irano Tur

Apiaceae

Ammodaucus leucotrichus

A

TH

Sah

Bupleurum semicompositum

A

TH

Med

Asteraceae

Anacyclus cyrtolepidioides

A

TH

End

Anacyclus clavatus

A

TH

Eur Med

Anthemis stiparum

A

TH

Sah

Artemisia herba alba

P

CH

Med

Asteriscus pygmaeus

A

TH

Sah Ara

Atractylis cancellata

A

TH

Med

Atractylis humilis

P

HE

Med

Atractylis prolifera

A

TH

Sah Ara

Atractylis serratuloides

P

CH

Sah Ara

Carduncellus pinnatus

P

HE

Med

Centaurea incana

P

HE

Med

Evax argentea

A

TH

Med

Filago pygmaea

A

TH

Med

Ifloga spicata

A

TH

Sah Ara

Koelpinia linearis

A

TH

Med

Launaea nudicaulis

A

TH

Med Sah Ara

Launaea resedifolia

A

TH

Med Sah Ara

Leontodon hispidulus

A

TH

Med

Micropus bombycinus

A

TH

P

Rhaponticum acaule

A

TH

NA

Reichardia tingitana

A

TH

Med

Scorzonera laciniata

A

HE

Euras

Scorzonera undulata

A

HE

Med

Sonchus oleraceus

A

TH

P

Xeranthemum inapertum

A

TH

Med

Boraginaceae

Arnebia decumbens

A

TH

Med Sah Ara

Echium humil

P

HE

Sah Ara

Gastrocotyl hispida

A

TH

Sah Sind

Lappula redowskii

A

TH

Med

Nonnea micrantha

A

TH

Med

Brassicaceae

Alyssum granatense

A

TH

Euras

Alyssum macrocalyx

P

TH

End

Alyssum linifolium

A

TH

Med Irano Tur

Carrichtera annua

A

TH

Med

Diplotaxis harra

A

TH

Med Irano Tur

Enarthrocarpus clavatus

A

GE

End

Eruca vescicaria

A

TH

Med

Matthiola livida

A

HE

Sah Ara

Muricaria prostrata

A

TH

End

Sisymbrium runcinatum

A

TH

Med Irano Tur

Caprifoliaceae

Valerianella coronata

A

TH

Med

Caryophyllaceae

Telephium impirati

P

HE

Med

Herniaria hirsuta

P

TH

P

Silene tridentata

A

TH

Ibero Maur

Minuartia campestris

A

TH

Ibero Maur

Paronychia arabica

P

HE

Med

Chenopodiaceae

Noaea mucronata

P

CH

Irano Tur

Cistaceae

Helianthemum lippii

P

CH

Sah Ara

Helianthemum virgatum

P

TH

Med

Crassulaceae

Sedum sediform

P

CH

Med

Dipsacaceae

Scabiosa arenaria

A

TH

Med Sah Ara

Fabaceae

Argyrolobium uniflorum

P

HE

Sah Ara

Astragalus cruciatus

A

TH

Sah Ara

Astragalus gomboeformis

A

CH

End

Astragalus tenuifolius

P

HE

Med

Coronilla scorpioides

A

TH

Med

Hippocrepis multisiliquosa

A

TH

Med

Medicago arabica

A

TH

Med

Medicago laciniata

A

TH

Med Sah Ara

Ononis natrix

P

CH

Med

Ononis serrata

A

TH

Med

Trigonella polycerata

A

TH

Med

Geraniaceae

Erodium guttatum

P

HE

Sah Med

Erodium triangulare

A

TH

Med

Iridaceae

Iris sisyrinchium

P

GE

Med

Liliaceae

Muscari comosum

P

GE

Med

Lamiaceae

Salvia clendestina

P

HE

Med

Salvia verbenaca

A

HE

Med

Stachys brachyclada

P

TH

Med

Teucrium polium

P

CH

Eur Med

Marrubium diserti

P

CH

P

Thymus capitatus

P

CH

End

Malvaceae

Malva aegyptiaca

A

CH

Med Sah Ara

Malva parviflora

A

TH

Med

Papaveraceae

Glaucium corniculatum

A

TH

Med

Papaver hybridum

A

TH

Med

Papaver roheas

A

TH

P

Plantaginaceae

Plantago albicans

P

HE

Med

Plantago ciliata

A

TH

Sah Sind

Plantago psyllium

P

TH

Med

Poaceae

Aegilops triuncialis

A

TH

Med

Ammochloa pungens

A

TH

End

Avena bromoides

A

HE

Med

Bromus rubens

A

TH

Med

Ctenopsis pectinella

A

TH

Med

Cutandia dichotoma

A

TH

Med

Cynodon dactylon

A

GE

P

Dactylis glomerata

P

HE

Eur

Echinaria capitata

A

TH

Med

Lolium rigidum

A

TH

Med

Hordeum murinum

TH

TH

P

Poa bulbosa

P

GE

Med

Schismus barbatus

A

TH

Med

Stipa parviflora

P

HE

Med

Stipa tenacissima

P

HE

Med

Primulaceae

Anagallis arvensis

A

TH

P

Androsace maxima

A

TH

Euras

Coris monspeliensis

A

CH

Med

Ranunculaceae

Adonis dentata

A

TH

Med

Ceratocephalus falcatus

A

TH

Med Irano Tur

Ranunculus bulbosus

P

HE

Eur

Resedaceae

Reseda decursiva

A

HE

Med

Reseda lutea

A

TH

Med

Note: Morphological types*:A: annual ; P: perennial ; Biological types :TH: Therophyte, CH: Chamaephyte, HE: Hemicryptophyte, GO: Geophyte ; Chorological types: Med: Mediterranean; Eur-Med: Euro Mediterranean; Eur: European; Sah Ara: Saharan Arabian; Med Irano Tur: Mediterranean Irano Turanian; Irano Tur: Irano Turanian; End: Endemic; Euras: Eurasian; Med Sah Ara : MediterraneanSaharoArabian; P: Pluri-regional; Sah: Saharian; NA: North African; Sah Sind: Saharian Sindian; Ibero Maur: Ibero Mauritanian; Sah Med: Saharan Mediterranean.

Our species belong to 23 botanical families (Table. 1; Fig.2). The families with the highest representation are: Asteraceae (25 species, 23.58%), Poaceae (15 species, 14.15%), Fabaceae (11 species, 10.38%), Brassicaceae (10 species, 09.43%), Lamiaceae (6 species, 5.66%), Boraginaceae and Caryophyllaceae respectively with 5 species (4.72%), these 07 families contribute to 72% of species richness in the study area. The remaining families are poorly represented, with fewer than four species, such as: Apiaceae, Cistaceae, Geraniaceae, Chenopodiaceae, Plantaginaceae, Ranunculaceae, Primulaceae, Liliaceae.

Figure 2. Families rate diversity in study area


Table 2. Morphological types and diversity in the study area

Vegetation attributes

Value

Morphological types

Total species

106

Perinnial species (P)

32

Annual species (A)

74

Diversity

Shannon index (H’)

3.88±0.19

Evenness index (E)

0.86±0.03

This abundance of annual species (ephemeral) may be explained by the facilitation caused by the Stipa tenacissima and Lygeum spartum clumps (Maestre and Cortina 2002; Cavieres and al 2005). Indeed, the latter creates a microclimate and a wet pedoclimate favoring the proliferation of species by the mechanism of self-mulching, this phenomenon facilitates water retention, thereby promoting the growth of annual species (Aidoudet al 2006; Amgharand Kadi Hanifi 2008).Quezel and Bounaga (1975), report that, in Stipa tenacissima rangelands, 63% of species belongs to the element «tuft of Alfa».

According to Melzi (1990), the Alfa (esparto grass) (Stipa tenacissima) has a particular biotope that allows the proliferation of some species in or near the tufts. Indeed, this behavior was observed by Aidoud (1983) and we also observed it for Sedum sediforme (a species of forest biotope that found refuge in the tuft of Alfa in an arid environment) and the same for other species such as Ranunculus bulbosus, Dactylis glomerata (Figure 3).

Figure 3. Alfa (esparto grass) tuft (Stippa tenacissima) as microclimate for the proliferation of some species:
(A) Sedum sediforme ; (B) Ranunculus bulbosus; (C) Dactylis glomerata

Furthermore, The abundance of annual species can be attributed to the protective impact of grazing exclusion (enclosures), which enables these species to complete their phenological cycles, produce seeds and consequently enhance their seed reserves in the soil (El Gharbaoui and al 1996 ; Sidi Mohamed and al 2004; Aidoud and al 2006). In this regard, research conducted in several countries, including Turkey (Koç et al., 2013), Morocco (Berkat 1986; El Nrabti 1989) and China (Hu and al 2019), has revealed that soil seed availability is generally reduced in grazed areas compared to those under protection, such as enclosures.

Regarding diversity indexes Shannon-weaver (H') and Pielou eveness (E), the results show high values (Table2) (H': 3.88; E: 0.86). These findings suggest a notable richness in species, contributing to the high ecological stability of plant communities. A high equitability index indicates favorable conditions that support the establishment of a wide range of species, alongside the predominance of certain others (Dajoz 1982; N’Zala and al 1997). In the present study, protection from overgrazing is identified as one of these favorable conditions. Numerous studies have shown that species diversity tends to decline as grazing intensity increases across various regions (Todd 2006; Hassani and al 2008; Amghar and al 2012; Hanke and al 2014; Salemkour and al 2016).

Life forms types

Plant life forms are an essential tool for characterizing the structure and physiognomy of vegetation. They reflect the adaptive strategies of plant species and vegetation to their surrounding environmental conditions (Daget 1980; Box 1987; Barry 1988) and serve as indicators of the structure and functionality of ecological systems (Aronson et al., 1993a, b). The analysis of the Raunkiaer life form spectrum (Figure 4) in the study area showed that therophytes were the most prevalent life form, accounting for 68 species (64.15%), followed by hemicryptophytes with 22 species (20.75%), chamaephytes with 11 species (10.38%) and geophytes with 5 species (4.72%).

Figure 4. Life forms types distribution of plant species in the study area

The prevalence of therophytes can be explained by the abundance of microhabitats that promote the growth and establishment of annual species. These therophytes, in particular, exhibit rapid germination and growth, which enhances their abundance in rangelands (Hobbs 2001; Gamoun, 2012 ), Olivier and al (1995) report that the proportion of this life formis approximately 50% in the Mediterranean region and with aridity (Daget 1980) and degradation (Grime 1977), this rate increases very significantly dominating other life forms types, Daget (1980) describes this phenomenon by «Therophytization » and states that it is an adaptive strategy of species to adverse conditions. Moreover, therophytes by their biology are often described as «deserters» (Noy-Meir 1973; Daget 1980).

Hemicryptophytes come in second position, According to Evenari (1975), this life form is highly prevalent in vast areas of arid rangelands, comprising over 50 species, most of which belong to the Poaceae family. These species originate from seeds and reproduce vegetatively through various plant structures. Also, this place occupied by hemicryptophytes is due to protection against overgrazing (enclosure) which has allowed the maintenance of hemicryptophyte species of good pastoral quality such as: Stipa parviflora, Dactylis glomirata, Avena bromoides, Argyrolobium uniflorum, Astragalus tenuifolius, Matthiolalivida, Scorzonera aciniata, Scorzonera undulata, Centaurea incana, Plantago albicans (Figure 5.),but Ozenda (2004) stated that the prevalence of hemicryptophytes can be attributed to the degradation of ecological conditions, which is generally linked to climatic factors and human activities.

Many researchers have sounded the alarm. For example, Le Houérou, in 1995, highlighted the increasing decline of the alfa steppes in the South of Oran, despite the return of rains and questioned the irreversibility of this phenomenon.

Chamaephyte species rank third and this group of plant types can thrive in arid rangelands due to their strong adaptations to dry and harsh conditions (Raunkiær1934; Gamoun, 2012). Furthermore, it should be noted that most of the perennial species are chamaephytes, such as: Artemisia herba alba, Helianthemum lippii, Helianthemum virgatum, Teucrium polium, Marrubium diserti, Noaeamucronata, Atractylis serratuloides, Ononis natrix. which characterize the dry and desert rangelands (Figure 5).

Geophytes occupy the lowest position with a minimal representation, as several authors have noted their decline and disappearance in steppe area sand grasslands (Barbero et al., 1989; Henni and al 2012). Additionally, phanerophytes are entirely absent in the study area. Kadi Hanifi (2003) confirms that phanerophytes consistently rank last among biological types in steppe regions.

Figure 5. Some Hemicryptophytes and Chamaephytes species identified in the study area

The chamaephytics species confirms the two phenomena of degradation of steppic formations, chamaephytization and therophytization, which characterize the flora of plant formations in arid and semi-arid zones. It is a strategy for adapting plant formations to the anthropogenic and climatic pressures that this region is subject to. Regarding; geophytes are, on the whole, the least well represented in most of the studied formations (Boukerker et al 2022). Indeed many researchers have demonstrated that their rate is however relatively higher in forest environments than steppe areas where they completely disappear in accordance with the observations of (Barbero et al 1989) in (Boukerker et al 2022).

Méderbal (1992) emphasizes that the flora and fauna of arid zones are adapted to drought cycles and have the necessary capacities to cope with them. He adds that in protected and protected areas (in the absence of the increasing influence of man and animals, the main causes of degradation of vegetation cover and desertification), drought leaves no trace on the environment (example: the Algerian-Moroccan border). In arid rangelands, a moderate animal load is always more favorable because it allows more resilience and fewer ecological risks (Holechek et al 1999).The reduced controlled area mitigates selective grazing and, consequently, the decline of forage species (Heady 1961; Savory 1983). Deferred grazing in controlled areas improves biodiversity, vegetation cover and pastoral value. The higher cover in developed areas testifies in particular to a regeneration of the cover of perennials which represent a bulwark against degradation in arid ecosystems (Le Houérou 1992; Milton et al 1994; Aidoud and Touffet, 1996).

The reasoned logic management of developers opposes the strategies of breeders who seek to meet the immediate needs of their herds and families. It is a question of respecting the animal load by pastoral management based on the potentialities of the rangelands and this can be achieved only after the elaboration of studies on the evaluation and characterization of the agro-sylvo-cultural potentialities of these latter to find a balance between primary productivity and its consumption by herbivores. The public authorities should encourage breeders to improve and conserve their best animals (Camlin and the local breed "El Hamra") and thus by, organizing competitions and festivals, across the national territory with the awarding of bonuses, medals and others, benefits offered (vaccines, equipment, etc.) to the best. These actions must be initiated by the departments of agriculture of the wilayas (Boukerker et al 2021).

Chorological types

The chorological types of plant species identified in the study area are illustrated in the following figure (Figure 6.), According to the result we can classify our species into 15 chorological types.

Figure 6. Chorological types spectrum of the recorded plant species in the study area. Med: Mediterranean; Eur. Med: Euro Mediterranean;
Eur: European; Sah. Ara: Saharan Arabian; Med. Irano Tur.: Mediterranean Irano Turanian; Irano Tur.: Irano Turanian;
End.: Endemic; Euras.: Eurasian; Med. Sah. Ara. : Mediterranean SaharoArabian; P.: Pluriregional; Sah.: Saharian;
N.A.: North African; Sah. Sind.: Saharian Sindian; Ibero Maur.: Ibero Mauritanian; Sah. Med.: Saharan Mediterranean

The Mediterranean chorotype is dominated by species with a Mediterranean affinity compared to other types. These findings affirm the inclusion of the study area into the Mediterranean region, as corroborated by various authors who have conducted research in similar steppe regions (Quézel1983; Le Houérou 1995; Amghar 2012; Belhaciniand Bouazza 2012 ; Belhacini and Bouazza 2015).The Mediterranean type is the most prevalent, with 55 species (52%), followed by the Saharan-Arabian type, which includes 9 species (8.5%). The presence of these species in these environments can be attributed to the geographic location of the steppe areas, which border the desert (Aidoud 1983). These results are in the same direction as those of Aidoud-Lounis (1997), Amghar (2002), Kadi Hanifi (1998) and Le Houérou (1995), namely that the Saharan-Arabian element increases with aridity. In third position comes Pluriregional type with 08 species (7.5%), 75% of which are therophytes. This element testifies to the impact of anthropic action in the standardization and therophytization of flora (Aidoud-Lounis 1997; Kadi Hanifi 1998; Amghar, 2002).

With 07 species (6.60%), the Endemic type ranks fourth in our analysis. The endemicity rate for the Maghreb steppes, Sahara excluded, is estimated at 19.6% by Le Houérou (1995), which he finds very high and estimates the endemicity rate for the Algerian steppes at 4.5%, while Verlaqueet al(1997), estimate it at 15% for Algeria. In our work the endemic species recorded are represented by two (02 species) chamephytes Astragalus gomboeformis and Thymus capitatus, one (01 species) geophyte Enarthocarpus clavatus and especially therophytes (04 species) Alyssum macrocalyx, Anacyclus cyrtolepidioides, Muricaria prostrata, Ammochloa pungens (Figure. 7).

1 Astragalus gomboeformis, 2 Thymus capitatus, 3 Enarthocarpus clavatus, 4 Alyssum macrocalyx,
5 Anacyclus cyrtolepidioides, 6 Muricaria prostrata, 7 Ammochloa pungens
Figure 7. Endemic species identified in the study area

The two types Mediterranean Saharo-Arabian and Mediterranean Irano-Turanian which come respectively in fifth and sixth position with respectively 06 and 05 species ( 5.66% and 4.71% respectively), for these two types, Ozenda (2004), suggests to group them under the name of connecting species or connecting group, because these regions have been adjoining since ancient geological times, as well as their belonging to the same type of climate has resulted in a large number of plants common to these two regions (Eig, 1931).

Finally, the other chorotypes provide just a minor contribution to the floristic richness in our study.


Conclusion

At the end of this study and through the floristic inventory carried out, it appears that the steppic Stipa tenacissima rangelands study area, present an important phytodiversity marked by 106 species recorded belonging to 23 botanical families and the dominance of Asteracea, Poaceae, Fabaceae, Brassicaceae, Lamiaceae, Boraginaceae and Caryophyllaceae which contribute to 72% of the flora recorded. Annual species are largely dominated, according to some authors, this is owing to the facilitation generated by the tufts of Stipa tenacissima and Lygeum spartum which offer and create a microclimate and a wet pedoclimate favoring the proliferation of annual species. Also, the floristic diversity indexes ( Shannon-weaver (H') and Pieloueveness (E)) results show high values, which reflect a high ecological stability.

The analysis of biological types shows a predominance of therophytes over other forms, it is the phenomenon of therophytization, that reflects a form of adaptation of species to adverse conditions and who characterizes arid areas. Regarding the chorological types analysis, the results reveal the dominance of Mediterranean type with 52 % and 55 species, which confirms the integration of the study area with the Mediterranean region. Furthermore, it should be noted that the endemic type offers seven species with a rate of 6.60 % that must be preserved and protected in view of their biological and heritage values.

The findings of this study revealed a rich diversity plants that represent a promising solution for ensuring food security, especially in regions vulnerable to food crises and climate variability. Their nutritional potential and ability to adapt to harsh environments make them essential allies for the resilience of steppic systems.

The grazing livestock load of a pasture, which is the mass of livestock that can be supported by land without the risk of its soil being destroyed, is largely exceeded in the Algerian steppe areas, which has accentuated their degradation and desertification since the sparse vegetation, destroyed as soon as it grows, can in no way protect the soil. It is mainly sheep and goats that degrade the vegetative cover, since these animals cut the grass or even tear it down and goats also destroy woody plants (Boukerker et al 2021).

The sustainable management of rangelands must reconcile the immediate needs of breeders with a reasoned approach that ensures long-term ecological balance. This requires evaluating agro-sylvo-pastoral potentialities to optimize grazing while preserving vegetation. Authorities should encourage breeders to improve livestock through incentives such as competitions and subsidies. Establishing forage plantations with adapted perennial species, as demonstrated by the Atriplex experiment in El Bayadh, is crucial. Limiting mechanized tillage and using agricultural by-products as livestock feed can further reduce degradation. Additionally, defending degraded perimeters has proven effective in restoring vegetation cover, enhancing soil stability and mitigating erosion risks.


References

idoud A 1983 Contribution à l'étude des écosystèmes steppiques du Sud-Oranais : phytomasse, productivité primaire et applications pastorales. Thèse Doctorat, 3ème Cycle, Univ. Sci. Tech. H. Boumediene, Alger, 256 p. + Ann.

Aidoud A and Touffet J 1996 La régression de l’alfa (Stipa tenacissima L.), graminée pérenne, un indicateur de désertification des steppes algériennes. Sécheresse, 3(7) : 187-193.

Aidoud A, Le Floc’h E and Le Houérou H N 2006 Les steppes arides du nord de l’Afrique. Sécheresse, 17 (1-2) : 19-30.

Aidoud L F 1997 Le complexe à alfa-armoise-sparte (Stipa tenacissima L., Artemisia herba-alba Asso., Lygeumspartum L.) des steppes arides d'Algérie ; structure et dynamique des communautés végétales. Thèse Doctorat ES Science, Univ. Aix-Marseille III, France, 214 p. + Ann.

Amghar F 2002 Contribution à l'étude de la biodiversité de quelques formations de dégradation en Algérie. Thèse Magister, Univ. Sci. Tech. H. Boumediene, Alger, 166 p. + Ann.

Amghar F and Kadi H H 2008 Diagnostic de la diversité floristique de cinq stations steppiques du sud Algérois. Les cahiers d'orphée, 1: 385-395.

Amghar F 2012 Restauration et réhabilitation des ecosystèmes steppiques Effet de la mise en défens et de l'introduction des plantes fourragères sur la biodiversité, le sol et sa surface. Thèse de doctorat. Univ. Sci. Tech. H. Boumediene, 165p, + Ann.

Amghar F, Forey E, Margerie P, Langlois E, Brouri L and Kadi-Hanifi H 2012 Grazing exclosure and plantation: a synchronic study of two restoration techniques improving plant community and soil properties in arid degraded steppes (Algeria). Rev. Ecol. (Terre Vie), 67: 257-269.

Aronson J, Floret C, Le Floc'h E, Ovalle Cand Pontanier R 1993a Restoration and rehabilitation of degraded ecosystems in arid and semi-arid lands.A view from the south. Restoration Ecology, (1): 8-17.

Aronson J, Floret C, Le Floc’h E, Ovalle C and Pontanier R 1993b Restoration and rehabilitation of degraded ecosystems in arid and semi-arid lands. II Case studies in Southern Tunisia, Central Chile and Northern Cameroon. Restoration Ecology, 1: 168-187.

Aronson J and Le Floch E 1996 Vital landscape attributes: missing tools for restoration ecology. RestorationEcology, 4 : 377-387.

Barbero M, Quézel P and Loisel R 1989 Perturbations et incendies en région méditerranéenne. Int. Estud. Pyrenaicos Jaca, 12 : 194–215.

Barry J P 1988 Approche Ecologique des Régions Arides de l’Afrique. Université de Nice. ISS de Nouakchott, 107 pp.

Bekai F, Kadik L and Nedjimi B 2019 Effects of deferring grazing on the floristic diversity of Stipa tenacissima(L.) Rangelands in central Algerian steppe. African Journal of Ecology, 57:1–8. https://doi.org/10.1111/aje.12614.

Belhacini F and Bouazza M 2015 Biogeographical aspect of scrublands south of Tlemcen (Western Algeria). Journal of Biology and Nature, 4 (1):56-64.

Belhacini F and Bouazza M 2012 The floristic diversity of the Tlemcen southern scrublands (Western Algeria). Journal of Life Sciences, 6: 1167-1173.

Bendali F, Floret C, L E Floc’h E and Pontanier R 1990 The dynamics of vegetation and sand mobility in arid regions of Tunisia. J. Arid Envir., 18: 21-32.

Bensenane I, Benabadji N, Ghezlaoui B E et Berkouki R 2014 Un écosystème steppique anthropisé (cas de la région d’El-Gor, Algérie, occidentale) Article in Mediterránea Serie de Estudios Biológicos · January 2014 DOI: 10.14198/MDTRRA2014.25.09

Benabdeli K 1983 Quel avenir pour la steppe en Oranie face aux pressions anthropiques. Séminaire national sur la steppe, l’alfa et l’industrie. Mostaganem 20 et 21 mars 1983. Polycopié

Benabadji N, Benmansour D and Bouazza M 2007 La flore des monts d’Ain Fezzan dans l’ouest Algérien, biodiversité et dynamique. Sciences and Technologie. C. Biotechnologies, 26 : 47-59.

Berkat O 1986 Population structure, dynamics and regerenation of Artemisia herba alba Asso. Thèse de doctorat en sciences agronomiques. Inst. Agronomique et vétérinaire Hassan II, Rabat 166p.

Bouazza M 1995 Etude phyto-écologique des steppes à Stipa tenacissima (L.) et Lygeum spartum L. au Sud de Sebdou (Oranie, Algérie). Thèse de Doctorat ès Sciences. Université de Tlemcen, Algérie.

Bouakkaz A 1976 Contribution à la détermination de l’aire minimale des formations à Stipa tenacissima dans la partie sud-ouest de la wilaya de Saïda. D.E.A.Ecol.Vég. Univ. Alger.36 p.

Boukerker H, Boumedjene M R, Doghbage A, Belhouadjeb F A, Kherifi W, Hecini L and Bekiri F 2021 State of pastoral resources in the Algerian steppe regions: main factors of degradation and definition of preservation and rehabilitation actions. Livestock Research for Rural Development. Volume 33, Article #140. Retrieved March 15, 2025, from http://www.lrrd.org/lrrd33/12/33140hbouk.html

Boukerker H, Hecini L, Salemkour N, Boumedjane MR, Kherifi W, Doghbage A, Belhouadjeb F A, Bekiri F, Boultif M and Diab N 2022 Impacts of grazing, restoration by planting on the pastoral potential, floristic richness and diversity of a the southwestern steppe of Naâma (Algeria), in the context of climate change. Livestock Research for Rural Development. Volume 34, Article #68. Retrieved March 15, 2025, from http://www.lrrd.org/lrrd34/8/3468hbou.html

Boussaada D, Yerou H, Benabdelli K and Djelailia S 2022 Evaluation des potentialités pastorales des parcours steppiques algériennes cas de M’sila (Algérie). Livestock Research for Rural Development. Volume 34, 19, 2023. http://www.lrrd.org/lrrd34/1/3404bouss.html

Box E O 1987 Plant life forms and mediterranean environments. Annali di Botanica, 15 (2): 7-42.

Cavieres L A, Quiroz C L, Molina Montenegro M A, Mufioz A A and Pauchard A 2005 Nurse effect of the native cushion plant Azorella monantha on the invasive non-native Taraxacum officinale in the high-Andes of central Chile. Perspectives in Plant Ecology, Evolution and Systematics, 7: 217-226.

Cerdà A 1997 The effect of patchy distribution of Stipa tenacissima (L.) on runoff and erosion. J. Arid Environ., 36 : 37-51.

Chaieb M 1989 Influence des réserves hydriques du sol sur le comportement comparé de quelques espèces végétales de la zone aride tunisienne. Thèse, Université des Sciences et Techniques de Languedoc, Montpellier.

Daget P 1980 Sur les types biologiques botaniques en tant que stratégie adaptative (cas des thérophytes). In : Barbault, R., Blandin, P. and Meyer, J. A. (eds), Recherches d'écologie théorique, les stratégies adaptatives. Maloine, Paris : 89-114.

Daget P and Poissonet J 1971 Une méthode d’analyse phytoecologique des prairies. Critères d’application. Annales d’Agronomie, 22 (1) : 5-41.

Dajoz R 1982 Précis d'écologie. Ecologie fondamentale et appliquée.Ed.Gauthier-Villers. Paris,503 p.

Djebaili S 1978 Recherches phytosociologiques et phytoécologique sur la végétation des hautes plaines steppiques et de l’Atlas saharien algérien. Thèse Doct., Montpellier, 229p.

Eig A 1931 Les éléments et les groupes phytogéographiques auxiliaires dans la flore palestinienne. Feddes Repert. Specierum Nov. Regni veg. Beih., 2 vol., 63 (1) : 1-201.

El Nrabti K 1989 Contribution à l’étude de la germination de Stipa tenacissima (L.) Stock du sol en semence et suivie des plantules selon les microsites. Thèse de 3 éme cycle. E.N.A. de Meknès 167p.

El Gharbaoui A, El Yamani A, El Maghraoui A, Boutouba R, Alaoui M and Kabak A 1996 Projet de développement des parcours et de l’élevage dans l’Oriental : Stratégie de développement des terrains de parcours. Terre et Vie 24.

Ellenberg I and Mueller-Dombois D 1967 A key to Raunkiaer plant life forms with revised subdivisions. Ber. Geobot. I nst. ETH, Stiftg. Rübel, Zürich, 37: 56-73.

Evenari M, Schulze E D, Kappen L, Buschbom V and Lange O L 1975 Adaptative mechanism in desert plants. In: Vernberg F.J. (Ed), Physiological Adaptation to the Environments: 111-129.

Fennane M and Ibn Tattou M 2012 Statistiques et commentaires sur l’inventaire actuel de la flore vasculaire du Maroc. Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Vie, 2012, n°34 (1): 1-9.

Floret C 1988 Méthodes de mesure de la végétation pastorale. Pastoralisme et développement. Rabat / Montpellier, 95 p. + annexes.

Gamoun M, Ouled Belgacem A, Hanchi B, Neffati M and Gillet F 2012 Effet du pâturage sur la diversité floristique des parcours arides du Sud Tunisien. Terre et Vie, 67(3):271-282; doi : https://doi.org/10.3406/revec.2012.1966.

Gamoun M and Louhaichi M 2021 Botanical composition and species diversity of arid and desert rangelands in Tataouine, Tunisia. Land, 10, 313. https:// doi.org/ 10.3390/ land10030313.

Greuter W, Burdet HM and Long G 1984-1986-1989 Med-Checklist. Inventaire critique des plantes vasculaires des pays circum-méditerranéens. Optima et Cons. et Jardin Bot. de la ville de Genève. Vol. I, 430 p., Vol.III, 542 p., Vol. IV, 586 p.

Grime J P 1977 Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory.The American Naturalist, 111 (982): 1169-1194.

Hanke W, Böhner J, Dreber N, Jürgens N, Schmiedel U and Wesuls D 2014 The impact of livestock grazing on plant diversity: An analysis across dryland ecosystems and scales in Southern Africa. Ecological Applications, 24:1188-1203.

Hassani N, Asghari H R, Frid A S and Nurberdief M 2008 Impacts of overgrazing in a long term traditional grazing ecosystem on vegetation around watering points in a semi-arid rangeland of North-Eastern Iran. Pakistan Journal of Biological Sciences,11:1733-1737.

Heady H F 1961 Continuous vs. specialized grazing systems: a review and application to the California annual type. J. Range. Manage., 14: 182-193.

Henni M and Mehdadi Z 2012 Évaluation préliminaire des caractéristiques édaphiques et floristiques des steppes à armoise blanche dégradées réhabilitées par la plantation d’Atriplex dans la région de Saïda (Algérie occidentale). Acta Botanica Gallica, 159: 43-52.

Hobbs R J 2001 Synergisms among habitat fragmentation, livestock grazing, and biotic invasions in southwestern Australia. Conserv. Biol., 15:1522–1528.

Holechek J L, Thomas M G, Molinar F and Galt D 1999 Stocking desert rangelands: what have we learned? Rangelands, 21: 8-12.

Hu A, Zhang J, Chen X, Chang S and Hou F 2019 Winter Grazing and Rainfall Synergistically Affect Soil Seed Bank in Semiarid Area, Rangeland Ecology and Management, 72, 160-167.

Jacobo E J, Rodrıguez A M, Bartoloni N and Deregibus V A (2006) Rotational grazing effects on rangeland vegetation at a Farm Scale. Rangeland Ecol. Manage. 59:249–257.

Jeddi K and Chaieb M 2010 Changes in soil properties and vegetation following livestock grazing exclusion in degraded arid environments of South Tunisia. Flora, 205: 184-189.

Kadi Hanifi H 2003 Diversité biologique et phytogéographique des formations à Stipa tenacissima (L.) de l’Algérie. Sècheresse, 14 (3) : 169-179.

Kadi Hanifi H 1998 L'alfa en Algérie. Syntaxonomie, relation milieu-végétation, Dynamique et perspectives d'avenir. Thèse Doctorat Es science, Univ. Sci. Tech. H. Boumediene, 270 p.

Khelil A 1997 L’écosystème steppique : quel avenir ? Edition DAHLAB Alger. 184p.

Koç A, Gullap M K and Erkovan H I 2013 The soil seed bank pattern in highland rangelands of eastern anatolian region of turkey under different grazing systems.Turkish Journal of Field Crops, 18(1) :109-117.

Le Floc’h E 2001 Biodiversité et gestion pastorale en zones arides et semi-arides méditerranéennes du Nord de l’Algérie. Bocconea, 13: 223-237.

Le Floc’h E and Aronson J 1995 Ecologie de la restauration. Définition de quelques concepts de base. Natures Sciences Sociétés, Hors Série : 29-35.

Le Houérou H N 1969 La végétation de la Tunisie steppique. Ann. Inst.Natl. Agron. (Tunis)1969 ; 42: 624 p.

Le Houérou HN 1992 An overview of vegetation and land degradation in world arid lands. Pp 127-163 In: H.E. Dregne (ed). Degradation and restoration of arid lands. International Center for Arid and Semi-Arid Lands Studies, Texas Tech. Univ., Lubbock.

Le Houérou H N 1995 Bioclimatologie et biogéographie des steppes aride du Nord de l'Afrique- Diversité biologique, développement durable et désertisation. Options Médit., (10): 1- 397.

Le Houérou H N 1995 Considérations biogéographiques sur les steppes arides du nord de l’Afrique. Sécheresse, 6 : 167-182.

Maestre F T and Cortina J 2002 Spatial patterns of surface soil properties and vegetation in a Mediterranean semi-arid steppe. Plant Soil, (241): 279-291.

Magurran A 2004 Measuring Biological Diversity. Malden, MA, Wiley-Blackwell, USA. 71p.

Maire R 1952–1987 Flora of North Africa Morocco, Algeria, Tunisia, Tripolitania, Cyrenaica and Sahara Paris: Lechevalier. 1 to 16 volume.

Mederbal K 1992 Compréhension des mécanismes de transformation du tapis végétal: approches phyto-écologiques par télédétection aérospatiale et analyse dendroécoloqique de Pinus halepensis Mill., dans l'ouest Algérien. Thèse d'Etat Es Sciences, Université d'Aix Marseille III, 229.

Melzi S 1990 Evaluation du processus de la désertification dans une région présaharienne du sud Algérois. Biocénoses 5(1.2) : 85- 102.

Merdas S, Menad A, Mostephaoui T and Sakaa B 2017 Plant community structure and diversity under grazing gradient in arid Mediterranean steppe of Algeria. J. Mater. Environ. Sci., 8(12):4329-4338.

Milton S J, Dean W R J, Du Plessis M A, Siegfried W R 1994 A conceptual model of aride rangeland degradation. BioScience, 44: 70-76

N’zala D, Nongamani A, Moutsamboté J M and Mapangui A 1997 Diversité floristique dans les monocultures d’eucalyptus et de pins au Congo. Cahiers Agricultures, 6 (3): 169-74.

Nedjraoui D 2004 Evaluation des ressources pastorales des régions steppiques Algériennes et définitions des indicateurs de dégradation. Cahiers Options Méditerranéennes,62:239-243.

Nedjraoui D and Bedrani S 2008 La désertification dans les steppes algériennes : causes, impacts et actions de lutte, Vertigo, la revue électronique en sciences de l’environnement, V.8 N1. URL : https://vertigo.revues.org/5375.

Nègre R 1962 Petite flore des régions arides du Maroc occidental. Tome I et II. C.N.R.S. Paria 413 + 566 p.

Noy-Meir I 1973 Desert ecosystems: environment and producers. Annu. Rev. Ecol. Syst. 4: 25-51.

Olivier L, Muracciole M and Ruderon J P 1995 Premier bilan sur la flore des îles de la Méditerranée. Etat des connaissances et conservation. Colloque d'Ajaccio. Corse .France (5-8octobre, 1993) : PP. 355-372.

Ozenda P 2004 Flore et végétation du Sahara, 3rd Ed. CNRS, Paris, 662 pages.

Pielou E C 1966 The measures of diversity in different types of biological collections. J. of TheoreticalBiology, 13: 131-144.

Pottier Alapetite G 1979 Flore de la Tunisie : Angiospermes, DicotyledonesApetales-Dialypetales. Ministère de l’Enseignement Supérieur et de la Recherche Scientifique et le Ministère de l’Agriculture : Tunis, Tunisia. pp. 1–654.

Pottier Alapetite G 1981 Flore de la Tunisie : Angiospermes-Dicotylédones, Gamopétales. Programme Flore et Végétation Tunisiennes. Ministère de l’Enseignement Supérieur et de la Recherche Scientifique et le Ministère de l’Agriculture : Tunis, Tunisia. Pp. 655-1190.

Pouget M 1980 Les relations sol-végétation dans les steppes Sud-algéroises. Trav. et Doc. ORSTOM, Paris, 555 p.

Quézel P 1965 La végétation du Sahara, du Tchad à la Mauritanie. Fisher Verlag, Stuttgart. 333p.

Quézel P 1983 Flora and vegetation of North Africa, their significance through the origin, evolution and migration of flora and vegetation structures past. Bothalia, 14, 411-416.

Quezel P 2000 Réflexions sur l’évolution de la flore et de la végétation au maghrebméditerranéen. Ibis Press, Paris. 117 p.

Quézel P and Santa S 1962- 1963 Nouvelle flore de l’Algérie et des régions désertiques méridionales. Vol 1and 2. Ed. CNRS, Paris, 1170 p.

Quézel P and Bounaga D 1975 Aperçu sur la connaissance actuelle de la flore d’Algérie et de Tunisie. In : La flore du bassin méditerranéen : essai de systématique synthétique. Colloques internationaux du Centre national de la recherche scientifique, no 235. CNRS, Paris: 125-130.

Raunkiaer C 1934 The life form of plants and statistical plant geography: being the collected papers of C.Raunkiaer. Clarendon Press, Oxford, 632 p.

Salemkour N, Benchouk K, Nouasria D, Kherief-Nacereddine S and Belhamra M 2013 Effets de la mise en repos sur les caractéristiques floristiques et pastorale des parcours steppiques de la région de Laghouat (Algérie). Journal Algérien des Régions Arides, 12 : 103 –114.

Salemkour N, Fadlaoui H and Lebidi A 2017 La restauration de la richesse et la diversité floristique par la mise au repos dans une steppe à Stipa tenacissima (L.) de la région de M'Sila, Algérie. Afrique SCIENCE 13(4):369 – 380. ISSN 1813-548X, http://www.afriquescience.info

Salemkour N, Aidoud A, Chalabi K and Chefrour A 2016 Evaluation des effets du contrôle de pâturage dans des parcours steppiques arides en Algérie. Revue d'écologie (Terre andVie), 71(2) :178-191. doi : https://doi.org/10.3406/revec.2016.1839; https://www.persee.fr/doc/revec_0249-7395_2016_num_71_2_1839.

Savory A 1983 The Savory grazing method or holistic resource management. Rangelands, 5: 155-159

Selemani I S, Eik LO, Holand Ø, Ådnøy T, Mtengeti E and Mushi D 2013 The effects of a deferred grazing system on rangeland vegetation in a north-western, semi-arid region of Tanzania African. J. Range & Forage Sci., 30: 141-148

Shelef O, Weisberg P J and Provenza F D 2017 The Value of Native Plants and Local Production in an Era of Global Agriculture. Front. Plant Sci. 8 :2069. doi: 10.3389/fpls.2017.02069

Shannon C Eand Weaver W 1949 The mathematical theory of communication. Urbana, Chicago III. Univ. Illinois Press, 125 p.

Sidi Mohamed Y O, Neffati M and Henchi B 2004 Evolution des indices de diversité spécifique en Tunisie présaharienne sous l’effet de la mise en défens: cas des observatoires de Sidi Toui et de Oued Dekouk. In : Ferchichi A. (comp.), Ferchichi A. (collab.). Réhabilitation des pâturages et des parcours en milieux méditerranéens. Zaragoza : CIHEAM. Options Méditerranéennes, 62:477-480.

Slimani H, Aidoud A and Roze F 2010 30 Years of protection and monitoring of a steppic rangeland undergoing desertification. J. Arid Environ., 74: 685-691.

Todd S W 2006 Gradients in vegetation cover, structure and species richness of Nama-Karoo shrublands in relation to distance from livestock watering points. Journal of Applied Ecology, 43:293-304.

Verlaque R, Médail F, Quezel P and Babinot J F 1997 Endémisme végétal et paléogéographique dans le bassin méditerranéen. Géobios, 30:159-166.

Violle C, Navas M L, Vile D, Kazakou E, Fortunel C, Hummel I and Garnier E 2007 Let the concept of trait be functional!.Oikos, 116: 882 – 892.

Voisin A 1957 Productivité de l’herbe. Flammarion, Paris

Zehraoui R and Kadik L 2016 Résultats préliminaires de l’étude de l’impact des reboisements du barrage vert sur la biodiversité floristique cas de la région de Djelfa (Algérie). Séminaire International«Biodiversité et Changements Globaux» Djelfa,11p.https://www.researchgate.net/scientificcontributions/2132032359.